A simulation model to quantify the value of implementing whole-herd Bovine viral diarrhea virus testing strategies in beef cow-calf herds.

Although numerous diagnostic tests are available to identify cattle persistently infected (PI) with Bovine viral diarrhea virus (BVDV) in cow–calf herds, data are sparse when evaluating the economic viability of individual tests or diagnostic strategies. Multiple factors influence BVDV testing in determining if testing should be performed and which strategy to use. A stochastic model was constructed to estimate the value of implementing various whole-herd BVDV cow–calf testing protocols. Three common BVDV tests (immunohistochemistry, antigen-capture enzyme-linked immunosorbent assay, and polymerase chain reaction) performed on skin tissue were evaluated as single- or two-test strategies. The estimated testing value was calculated for each strategy at 3 herd sizes that reflect typical farm sizes in the United States (50, 100, and 500 cows) and 3 probabilities of BVDV-positive herd status (0.077, 0.19, 0.47) based upon the literature. The economic value of testing was the difference in estimated gross revenue between simulated cow–calf herds that either did or did not apply the specific testing strategy. Beneficial economic outcomes were more frequently observed when the probability of a herd being BVDV positive was 0.47. Although the relative value ranking of many testing strategies varied by each scenario, the two-test strategy composed of immunohistochemistry had the highest estimated value in all but one herd size–herd prevalence permutation.

These data indicate that the estimated value of applying BVDV whole-herd testing strategies is influenced by the selected strategy, herd size, and the probability of herd BVDV-positive status; therefore, these factors should be considered when designing optimum testing strategies for cow–calf herds.

Nickell, J. S.; White, B. J.; Larson, R. L.; et al.

Link to article